WBCS Mains Exam. Paper - VI Practice Set - 2023

1. (a) The water in river flows. The water in pool remains stagnant.
2. (b) 'Demand' is of greater intensity than suggestion. Similarly, Snatch is of greater intensity than Take.
3. (a) Smoke is emitted through chimney. Similarly, bullet is fired from gun.
4. (b) Light propagates in the form of rays. Similarly, sound travels in the form of waves.
5. (c) Surgeon uses forceps. Similarly, Blacksmith uses hammer.

फुप्रिणन्य
6. (d)

From above figure it is clear that D is grand father (maternal, i.e., mother's father) of A and B.
7. (c)

Clearly, A is father of E, D and B of which E and D are sons and B's sex is not given and C is B's daughter hence two possibilities exist :
(i) When B is female - then E (and also D) is maternal uncle of C. So option (c).
(ii) When B is male - then E (and also D) is paternal uncle of C .
Hence C and E are neice and uncle respectively. Option (c) is correct.
8. (b) D is father of B and C . A is brother of D . Therefore, C is niece of A .

শ্ডাড্ভির্स
9. (a)
$x \Rightarrow+\div \Rightarrow-$
? $=39 \times 23 \div 21 \times 5$
or, ? $=39+23-21+5$
or, ? $=67-21=46$
10. (b)

$\div \rightarrow+$	$\times \rightarrow-$

Given expression
$(15 \times 9) \div(12 \times 4) \times(4 \div 4)=$?
After changing the sign,
$?=(15-9)+(12-4)-(4+4)$
or, ? $=(6)+(8)-(8)$
or, $?=6+8-8=6$
फुप्विিर्य
11. (c) All the letters of word NATURAL are present in the word RETURNABLE. In the case of third option, the letter ' O ' of the second word is not present in the first word.
12. (c) Except Deposit, all other words are relative synonyms of one another.
13. (c)

$x \Rightarrow-\mid+\Rightarrow x$
$-\Rightarrow+$

Given expression
$6+(3 \times 1)+5=$?
After changing the signs
? $=6 \times(3-1) \times 5$
or, $?=6 \times 2 \times 5=60$

14. (c) Except Late, all other words convey more or less similar meaning.
15. (c) Confusion means a state of not being certain about what is happening.
Commotion means sudden noisy confusion or excitement.
Agitation means worry and anxiety that you show by behaving in a nervous way.
Annihilation means destruction (complete).
Thus, Annihilation is different from the other three words.
16. (c) 42 is a multiple of 3 .
17. (d) $6958 \Rightarrow 6+9+5+8=28$
$7948 \Rightarrow 7+9+4+5=28$
$6895 \Rightarrow 6+8+9+5=28$
But, $9783 \Rightarrow 9+7+8+3$
$=27$
आাভিষর্স
18. (b)

Now he is driving towards east.
19. (a)

It is clear from the diagram that Raju is facing towards South-East.
20. (d)

ख্যাঙ্িির্স
It is clear from the diagram that Ashok was in South direction from the starting point.
21. (b)

It is clear from the diagram that finally A was walking in west direction.
22. (a) Day before yesterday was Thursday.

Today is Saturday.
Tomorrow will be Sunday.

23. (a) Day before yesterday was Sunday.

Therefore, today is Tuesday.
Day after tomorrow will be Thursday.
Thursday $+3=$ Sunday
24. (d) The year 1989 was a normal year.

Days upto 15 August 1989 from August 15, 1988
$=16+30+31+30+31+31+28+31+30$
$+31+30+31+15=365=52$ weeks 1 day
Therefore, Wednesday $+1=$ Thursday
25. (c) Last Monday was December 29, 1975. Tuesday \rightarrow December 30,1975

Wednesday \rightarrow December 31, 1975
Thursday \rightarrow January 1, 1976
Friday \rightarrow January 2, 1976
26. (b) The given number series is based on the following pattern :
$1438-(3 \times 3)=1429$
$1429-(3 \times 4)=1417$
$1417-(3 \times 5)=1402$
$1402-(3 \times 6)=1384$
27. (d) Add 2, 3, 4, $5 \ldots$ respectively to numerators and add $4,6,8,10 \ldots$ respectively to the denominators.
Thus,

29. (c)

30. (d) G L A R E
$\downarrow \downarrow \downarrow \downarrow \downarrow$
67810
And,
MONSOON
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
2395339
Similarly,
R A N S OM
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
189532
31. (c) C A L C U T T A

D E L H I
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow \downarrow \downarrow \downarrow \downarrow$
$82589662 \quad 73541$
Therefore,
C A L I C U T
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
8251896
32. (d) R A P D C N
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
362857
33. (a) 915247
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
L Y C P J N
34. (b) The letter 'H' is not present in the keyword. Therefore the word CHARTER cannot be formed.
35. (b) There is no ' O ' or ' R ' in the keyword. Therefore, the word BOARD cannot be formed.
There is no ' P ' in the keyword.
Therefore, the word SHAPE cannot be formed. There is no ' C ' or ' R ' in the keyword. Therefore, the word CRASH cannot be formed.

B LA N DISH ME NT
क্ডাচ্ভির্स
36. (c) Meaningful order of words:
b. Fever
a. Doctor
d. Diagnose
c. Prescribe
\downarrow
e. Medicine
37. (a) Meaningful order
a. Pulp
c. Paper
b. Print
e. Publish
\downarrow
d. Purchase
38. (c) Suppose the age of Johnny is x years and that of Rahul is y years.
According to question
Age of Hari $=2 x=5 y$
or, $2 x-5 y=0$
Again $x=3+y$
or, $x-y=3$
On solving equations (i) and (ii), we get $y=2$
\therefore Age of Johnny $=3+y=3+2$
$=5$ years
39. (b) Suppose the age of son at present $=x$ years
\therefore Present age of son
$=\mathrm{x}+30$ years

Age of father at the birth of his son
$=x+30-x=30$ years
40. (b) From the two views of the dice, it is clear that Black is opposite to Red.
41. (c) The numbers 2, 4 and 5 cannot be on the opposite face of 6 . From the two views of dice, it is clear that 2 is at bottom when 4 is at top.
42. (b)

$\mathrm{U}=$ Unemployed ; $\mathrm{T}=$ Teacher
Educated people may be employed or unemployed.

आাভিখর্स
43. (a)

English and Hindi are two different languages.
44. (b)

45. (d)

46. (a)

47. (a)

48. (d)

49. (d)

50. (c)

51.(d) $\frac{8}{25}=0.32, \frac{7}{23}=0.30$
$\frac{11}{23}=0.47, \frac{14}{53}=0.26$
$\therefore \frac{14}{53}$ is the smallest fraction.
52. (d) LCM of 3,2 and $6=6$
$\therefore(3)^{\frac{1}{3}}=\left(3^{2}\right)^{\frac{1}{6}}=(9)^{\frac{1}{6}}$
$2^{\frac{1}{2}}=\left(2^{3}\right)^{\frac{1}{6}}=(8)^{\frac{1}{6}}$
(1) ${ }^{\frac{1}{6}}=1$;
$(6)^{\frac{1}{6}}=(6)^{\frac{1}{6}}$
53. (d) $\frac{13}{4} \times \frac{2}{3}-\left(\frac{9}{4}-\frac{5}{3}\right) \times \frac{3}{4}$
$=\frac{13}{6}-\left(\frac{27-20}{12}\right) \times \frac{3}{4}$
$=\frac{13}{6}-\frac{7}{12} \times \frac{3}{4}=\frac{13}{6}-\frac{7}{16}$
$=\frac{104-21}{48}=\frac{83}{48}$
54. (d) Let the numbers be $6 x$ and $6 y$ where x and y are prime to each other.
$\therefore 6 x \times 6 y=216$
खাভিভর্স
$\Rightarrow \mathrm{xy}=\frac{216}{6 \times 6}=6$
$\therefore \mathrm{LCM}=6 x y=6 \times 6=36$
55. (d) HCF of two numbers is 8 .

This means 8 is a factor common to both the numbers. LCM is common multiple for the two numbers, it is divisible by the two numbers. So, the required answer $=60$
56. (b) LCM of $3,5,6,8,10$ and $12=120$
\therefore Required number
$=120 x+2$, which is exactly divisible by 13
$120 \mathrm{x}+2=13 \times 9 \mathrm{x}+3 \mathrm{x}+2$
Clearly $3 \mathrm{x}+2$ should be divisible by 13 .
For $x=8,3 x+2$ is divisible by 13 .
\therefore Required number
$=120 \mathrm{x}+2=120 \times 8+2$
$=960+2=962$
57. (c) Suppose that
$1+\frac{1}{10+\frac{1}{10}}=\frac{111}{101}=\mathrm{a}$
and $1-\frac{1}{10+\frac{1}{10}}=\frac{91}{101}=b$.
$\therefore \frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{(\mathrm{a}+\mathrm{b})}=\frac{(a+b)(a-b)}{(a+b)}$
$=(\mathrm{a}-\mathrm{b})$
$=\frac{111}{101}-\frac{91}{101}=\frac{20}{101}$
फ़ापिषीर्त
58. (d) Let, $a=1+\frac{1}{10+\frac{1}{10}}$
$=1+\frac{1}{\frac{100+1}{10}}=1+\frac{10}{101}$
$=\frac{101+10}{101}=\frac{111}{101}$
Again,
$\mathrm{b}=1-\frac{1}{10+\frac{1}{10}}=1-\frac{1}{\frac{100+1}{10}}$
$=1-\frac{10}{101}$
$=\frac{101-10}{101}=\frac{91}{101}$
\therefore Expression
$=\left(a^{2}-b^{2}\right) \div a b$
$=\{(a+b)(a-b)\} \div a b$
$=\left(\frac{111}{101}+\frac{91}{101}\right)\left(\frac{111}{101}-\frac{91}{101}\right) \div\left(\frac{111}{101} \times \frac{91}{101}\right)$
$=\frac{202}{101} \times \frac{20}{101} \times \frac{101 \times 101}{111 \times 91}$
$=\frac{4040}{10101}$
59. (a) $\frac{2}{3} \times \frac{3}{\frac{5}{6} \div \frac{2}{3} \text { of } 1 \frac{1}{4}}$
$=\frac{2}{3} \times \frac{3}{\frac{5}{6} \div \frac{2}{3} \text { of } \frac{5}{4}}$
$=\frac{2}{3} \times \frac{3}{\frac{5}{6} \div \frac{10}{12}}$
$=\frac{2}{3} \times \frac{3}{\frac{5}{6} \times \frac{12}{10}}=\frac{2}{3} \times \frac{3}{1}=2$
60. (b) Required average
$=\frac{32 \times 60+33 \times 40}{72}$
$=\frac{1920+1320}{72}=\frac{3240}{72}=45$
61. (a) Average of all numbers
$=\frac{30 \times 40+40 \times 30}{70}$
$=\frac{240}{7}=34 \frac{2}{7}$
62. (c) $\mathrm{M}+\mathrm{T}+\mathrm{W}+\mathrm{TH}=4 \times 37$
$=148^{\circ} \mathrm{C}$
$\mathrm{TH}+\mathrm{F}+\mathrm{S}+\mathrm{S}=4 \times 41$
$=164^{\circ} \mathrm{C}$
$\mathrm{M}+\mathrm{T}+\ldots . \mathrm{S}+\mathrm{S}=7 \times 39$
$=273^{\circ} \mathrm{C}$
\therefore The temperature of the fourth day
$=148+164-273=39^{\circ} \mathrm{C}$
শ্ডাভির্র
63. (c) $\frac{\mathrm{m}}{\mathrm{n}}=\frac{3}{2}$ (Given)

$$
\begin{aligned}
& \therefore \frac{4 \mathrm{~m}+5 \mathrm{n}}{4 \mathrm{~m}-5 \mathrm{n}}=\frac{4\left(\frac{\mathrm{~m}}{\mathrm{n}}\right)+5}{4\left(\frac{\mathrm{~m}}{\mathrm{n}}\right)-5} \\
& =\frac{4 \times \frac{3}{2}+5}{4 \times \frac{3}{2}-5}=\frac{6+5}{6-5}=11: 1
\end{aligned}
$$

64. (b) Given, $\frac{x}{y}=\frac{2}{3}$.

Expression $=\frac{3 x+2 y}{9 x+5 y}$

$$
\begin{aligned}
& =\frac{3 \cdot \frac{x}{y}+2}{9 \frac{x}{y}+5}=\frac{3 \times \frac{2}{3}+2}{9 \times \frac{2}{3}+5}[\text { from (i)] } \\
& =\frac{2+2}{11}=\frac{4}{11}
\end{aligned}
$$

आাড্ভির্स
65. (c) $\frac{x}{y}=\frac{5}{6}$

$$
\therefore \frac{3 \mathrm{x}^{2}-2 \mathrm{y}^{2}}{\mathrm{y}^{2}-\mathrm{x}^{2}}=\frac{3 \cdot \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}-2}{1-\frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}}
$$

$$
=\frac{3 \times \frac{25}{36}-2}{1-\frac{25}{36}}=\frac{75-72}{36-25}=\frac{3}{11}
$$

سাভিভির
$=3: 11$
66. (d) Since 18% of the students neither play football nor cricket. It means 82% of the students either play football or cricket or both.
Using set theory
$\therefore \mathrm{n}(\mathrm{A} \cup \mathrm{B})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow 82=40+50-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{n}(\mathrm{A} \cap \mathrm{B})=90-82=8$
$\therefore 8 \%$ students play both games.
67. (d) $\frac{\mathrm{A} \times 90}{100}=\frac{\mathrm{B} \times 30}{100}$

$$
\Rightarrow 3 \mathrm{~A}=\mathrm{B}
$$

$\Rightarrow 3 \mathrm{~A}=\mathrm{A} \times \frac{2 \mathrm{x}}{100}$
$\Rightarrow 300=2 x \Rightarrow x=150$
68. (c) After taking away respective balls,

Number of balls in the box
$=75+25+50=150$
\therefore Percentage of black balls
$=\frac{50}{150} \times 100$
$=\frac{100}{3}=33 \frac{1}{3} \%$
69. (c) If the C.P. be x, then

आাড্ভির্स

$$
\begin{aligned}
& \frac{\mathrm{x} \times 130}{100}=1690 \\
& \Rightarrow \mathrm{x}=\frac{1690 \times 100}{130}=₹ 1300
\end{aligned}
$$

70. (c) S.P. of the fan $=\frac{150 \times 80}{100}=₹ 120$
71. (b) Actual C.P. of radio

$$
=600+\frac{600 \times 5}{100}=₹ 630
$$

ख্যাভ্ষির্স
\therefore Required S.P. $=\frac{630 \times 115}{100}=₹ 724.50$
72. (b) Case I : A single discount of 30%

Case II : Two successive discounts of 20% and 10% Single equivalent discount
$=\left(20+10-\frac{20 \times 10}{100}\right) \%=28 \%$
Difference $=(30-28) \%=2 \%$
\therefore Required difference $=2 \%$ of 550
$=₹ \frac{2 \times 550}{100}=₹ 11$.
73. (c) (i) : Equivalent discount
$=\left(25+15-\frac{25 \times 15}{100}\right) \%$

$=(40-3.75) \%=36.25 \%$
(ii) : Equivalent discount
$=\left(30+10-\frac{30 \times 10}{100}\right) \%$
$=(40-3) \%=37 \%$
(iii) : Equivalent discount
$=\left(35+5-\frac{35 \times 5}{100}\right) \%$
$=(40-1.75) \%=38.25 \%$
Clearly, third offer is best for a customer.
74. (d) Let the principal be x.

$$
\begin{align*}
& \text { S.I. }=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100} \\
& \Rightarrow 5400=\frac{\mathrm{x} \times 12 \times 3}{100} \\
& \Rightarrow \mathrm{x}=\frac{5400 \times 100}{12 \times 3}=₹ 15000 \tag{i}
\end{align*}
$$

শ্ছাড্ভির্স
75. (b)

Principal + SI for 7 years $=₹ 1020$
Subtracting equation (i) from (ii)
get,
SI for 5 years
$=₹(1020-720)=₹ 300$
\therefore SI for 2 years
$=₹ 300 \times \frac{2}{5}=₹ 120$
फ্ডাণ্ভির্স
\therefore Principal
$=₹(720-120)=₹ 600$
76. (d) After 10 years,

SI $=\frac{1000 \times 5 \times 10}{100}=₹ 500$
Principal for 11th year
फ्याভিिর্ज
$=1000+500=₹ 1500$
SI =₹ $(2000-1500)=₹ 500$
$\therefore \mathrm{T}=\frac{\mathrm{SI} \times 100}{\mathrm{P} \times \mathrm{R}}=\frac{500 \times 100}{1500 \times 5}$
$=\frac{20}{3}$ years $=6 \frac{2}{3}$ years
\therefore Total time $=10+6 \frac{2}{3}=16 \frac{2}{3}$ years
77. (c) S.I. for 1 year
$=14250-12900=₹ 1350$
S.I. for 4 years $=1350 \times 4=₹ 5400$
\therefore Principal $=12900-5400=₹ 7500$
\therefore Rate $=\frac{\text { S.I. } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{5400 \times 100}{7500 \times 4}=18 \%$ per annum
78. (a) Let the required time be n years.

Then,

$$
\begin{aligned}
& 1331=1000\left(1+\frac{10}{100}\right)^{n} \\
& {\left[\therefore P_{1}=P\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}\right]} \\
& \Rightarrow \frac{1331}{1000}=\left(\frac{10+1}{10}\right)^{\mathrm{n}} \\
& \Rightarrow\left(\frac{11}{10}\right)^{\mathrm{n}}=\left(\frac{11}{10}\right)^{3}
\end{aligned}
$$

$\Rightarrow \mathrm{n}=3$
79. (d) Let the sum be x.
$\therefore 1352=\mathrm{x}\left(1+\frac{4}{100}\right)^{2}$
$\Rightarrow 1352=x\left(1+\frac{1}{25}\right)^{2}$
$\Rightarrow 1352=x\left(\frac{26}{25}\right)^{2}$
$\Rightarrow \mathrm{x}=\frac{1352 \times 25 \times 25}{26 \times 26}=₹ 1250$
80. (a) $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$

Let rate be ' r '
$\Rightarrow \frac{1102.50}{1000}=\left(1+\frac{\mathrm{r}}{100}\right)^{2}$
$\Rightarrow \frac{11025}{10000}=\left(1+\frac{\mathrm{r}}{100}\right)^{2}$
$\Rightarrow \frac{11025}{10000}=\left(1+\frac{\mathrm{r}}{100}\right)^{2}$
$\Rightarrow\left(\frac{105}{100}\right)^{2}=\left(1+\frac{\mathrm{r}}{100}\right)^{2}$
$\Rightarrow 1+\frac{\mathrm{r}}{100}=\frac{105}{100}$
$\Rightarrow \frac{\mathrm{r}}{100}=\frac{5}{100}$
$\Rightarrow \mathrm{r}=5 \%$
81. (c) Time taken
$=\frac{2 \times 8 \times 6 \times 10}{8 \times 6+6 \times 10+10 \times 8}$
$=\frac{960}{48+60+80}=\frac{960}{188}$
$=\frac{240}{47}=5 \frac{5}{47}$ days
82. (a) A alone can complete the work in 42 days working 1 hour daily.
Similarly, B will take 56 days working 1 hour daily.
A's 1 day's work $=\frac{1}{42}$
B's 1 day's work $=\frac{1}{56}$
($\mathrm{A}+\mathrm{B}$) 's 1 day's work
$=\frac{1}{42}+\frac{1}{56}=\frac{4+3}{168}=\frac{7}{168}$
\therefore Time taken by $(\mathrm{A}+\mathrm{B})$ working
8 hours daily $=\frac{168}{7 \times 8}=3$ days
83. (c) $(\mathrm{A}+\mathrm{B})$'s 1 day's work $=\frac{1}{5}$

A's 1 day's work $=\frac{1}{8}$
\therefore B's 1 day's work $=\frac{1}{5}-\frac{1}{8}$
$=\frac{8-5}{40}=\frac{3}{40}$
\therefore B alone will complete the work in
$\frac{40}{3}=13 \frac{1}{3}$ days.
84. (d) (A + B)'s 1 day's work
$=\frac{1}{6}+\frac{1}{12}=\frac{2+1}{12}=\frac{1}{4}$
\therefore A and B together will complete the work in 4 days.

फ़ापिएन
85. (b) Part of the cistern filled by pipe Q in 1 minute
$=\frac{1}{20}-\frac{1}{30}=\frac{3-2}{60}=\frac{1}{60}$
\therefore Required time $=60$ minutes
86. (a) Part of the tank filled by all three taps in an hour $=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=\frac{6+4+2}{24}=\frac{1}{2}$
\therefore Hence, the tank will be filled in 2 hours.
87. (a) Part of the tank filled in an hour by both pumps
$=\frac{1}{8}+\frac{1}{10}=\frac{5+4}{40}=\frac{9}{40}$
\therefore Part of the tank filled in 4 hours
$=\frac{4 \times 9}{40}=\frac{9}{10}$
फुाগिির্জ
88. (d)

The distance covered upstream
$=\mathrm{AC}=\mathrm{d}$
$\mathrm{AB}=100$
$B C=100+d$
Rate upstream
$=(\mathrm{x}-\mathrm{y}) \mathrm{m} /$ minute
Rate downstream
$=(x+y) \mathrm{m} /$ minute
$\therefore \frac{\mathrm{d}}{\mathrm{x}-\mathrm{y}}=5$
$\Rightarrow \mathrm{d}=5(\mathrm{x}-\mathrm{y}) \ldots .(\mathrm{i})$
Again,
ख़ाডिির্স
$\frac{100+d}{x+y}=5$
$\Rightarrow \frac{100+5(\mathrm{x}-\mathrm{y})}{\mathrm{x}+\mathrm{y}}=5(\mathrm{By}(\mathrm{i}))$
$\Rightarrow 100+5 \mathrm{x}-5 \mathrm{y}=5 \mathrm{x}+5 \mathrm{y}$
$\Rightarrow 10 \mathrm{y}=100$
$\Rightarrow \mathrm{y}=10 \mathrm{~m} /$ minute
$=\frac{10}{1000} \times 60 \mathrm{kmph}$
$=0.6 \mathrm{kmph}$
फाரिির্स
89. (c) Let the speed of man in still water be x kmph and rate of stream be y kmph
\therefore Distance $=\frac{750}{1000} \mathrm{~km}=\frac{3}{4} \mathrm{~km}$
Time $=675$ seconds $=\frac{675}{60}=11 \frac{1}{4}$ minutes
$\therefore x-y=\frac{\frac{3}{4}}{\frac{45}{4}}=\frac{3}{45}=\frac{1}{15} \mathrm{~km} / \mathrm{min}$
and $x+y=\frac{\frac{3}{4}}{\frac{15}{2}}$
$=\frac{3}{4} \times \frac{2}{15}=\frac{1}{10} \mathrm{~km} / \mathrm{min}$
\therefore Speed in still water
$=\frac{1}{2}\left(\frac{1}{10}+\frac{1}{15}\right)=\frac{1}{2}\left(\frac{3+2}{30}\right)$
$=\frac{1}{12} \mathrm{~km} / \mathrm{min}$
$=\frac{1}{12} \times 60 \mathrm{kmph}=5 \mathrm{kmph}$
खाভ্ভির্স
90. (b) Let the speed of stream be $x \mathrm{kmph}$, then speed of boat in still water $=4 \mathrm{x} \mathrm{kmph}$
\therefore Rate downstream
$=4 \mathrm{x}+\mathrm{x}=5 \mathrm{x} \mathrm{kmph}$
Rate upstream $=4 \mathrm{x}-\mathrm{x}$
$=3 \mathrm{xkmph}$
$\therefore \frac{30}{3 \mathrm{x}}+\frac{30}{5 \mathrm{x}}=8 \Rightarrow \frac{10}{\mathrm{x}}+\frac{6}{\mathrm{x}}=8$
$\Rightarrow \frac{16}{x}=8 \Rightarrow x=\frac{16}{8}=2 \mathrm{kmph}$
91. (d) Using Rule 9,

Let the breadth be x m .
\therefore Length $=(23+\mathrm{x}) \mathrm{m}$
$\Rightarrow 2(\mathrm{x}+23+\mathrm{x})=206$
$\Rightarrow 4 \mathrm{x}=206-46$
$\Rightarrow \mathrm{x}=\frac{160}{4}=40 \mathrm{~m}$
\therefore Length $=40+23=63 \mathrm{~m}$
\therefore Required area $=63 \times 40=2520 \mathrm{~m}^{2}$
92. (d) Let the breadth of rectangular hall $=x \mathrm{~m}$.
\therefore length $=(x+5) \mathrm{m}$.
Area of hall
$=$ Length \times Breadth
$\Rightarrow 750=(\mathrm{x}+5) \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-750=0$
$\Rightarrow \mathrm{x}^{2}+30 \mathrm{x}-25 \mathrm{x}-750=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+30)-25(\mathrm{x}+30)=0$
खुप्विিर्य
$\Rightarrow(\mathrm{x}-25)(\mathrm{x}+30)=0$
$\Rightarrow \mathrm{x}=25$, as x cannot be negative
\therefore Length of hall $=\mathrm{x}+5$
$=25+5=30 \mathrm{~m}$.
93. (b)

$x^{2}+x^{2}=(5)^{2} \Rightarrow 2 x^{2}=25$
$\Rightarrow x^{2}=\frac{25}{2} \Rightarrow x=\frac{5}{\sqrt{2}}$
Area $=\frac{1}{2} \times \frac{5}{\sqrt{2}} \times \frac{5}{\sqrt{2}}$
$=\frac{25}{4}=6.25 \mathrm{sq} . \mathrm{cm}$.
94. (a) $\pi(\mathrm{r}+1)^{2}-\pi \mathrm{r}^{2}=22$
$\Rightarrow \pi\left(\mathrm{r}^{2}+2 \mathrm{r}+1-\mathrm{r}^{2}\right)=22$
$\Rightarrow 2 \pi \mathrm{r}+\pi=22$
खुড্ভির্ন
95. (d)
$\Rightarrow \frac{22}{7}(2 r+1)=22$
$\Rightarrow 2 \mathrm{r}+1=7$
$\Rightarrow 2 \mathrm{r}=6 \Rightarrow \mathrm{r}=3 \mathrm{~cm}$.

आাভ্ভির্স

Let $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 a \mathrm{~cm}$.
$\angle \mathrm{BAC}=\angle \mathrm{ACB}=\angle \mathrm{ABC}=60^{\circ}$
Area of $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$

फाரिির্स

$=\frac{\sqrt{3}}{4} \times 4 \mathrm{a}^{2}$
$=\sqrt{3} \mathrm{a}^{2}$ sq.cm.
Area of three sectors
$=3 \times \frac{60}{360} \times \pi \times \mathrm{a}^{2}$
$=\frac{\pi \mathrm{a}^{2}}{2} \mathrm{sq} . \mathrm{cm}$.
Area of the shaded region
$=\sqrt{3} a^{2}-\frac{\pi}{2} a^{2}$
$=\left(\frac{2 \sqrt{3}-\pi}{2}\right) \mathrm{a}^{2}$ sq.cm.
96. (c) House rent per month

$$
\begin{aligned}
& =18 \% \text { of ₹ } 33650 \\
& =₹ \frac{18 \times 33650}{100}=₹ 6057
\end{aligned}
$$

97. (a) Annual provident fund savings
$=12 \%$ of ($₹ 33650 \times 12$)

$$
=₹ \frac{12 \times 33650 \times 12}{100}=₹ 48456
$$

98. (c) Remaining monthly income

$$
\begin{aligned}
& =[100-(12+18)] \% \text { of } ₹ 33650 \\
& =₹ \frac{70 \times 33650}{100}=₹ 23555
\end{aligned}
$$

खुप्रिিन

99. (b) Amount spent on food and entertainment together
$=34 \%$ of ₹ 33650 फुणापिएन
$=₹ \frac{34 \times 33650}{100}=₹ 11441$
100. (d) Expenditure on children $=23 \%$

Provident fund savings $=12 \%$
For no children, total savings $=35 \%$
\therefore Required savings
$=35 \%$ of $₹ 33650$
आাভিষর্স
$=₹ \frac{35 \times 33650}{100}=₹ 11777.50$

