SSC CGL Tier-II Exam. Practice Set

Answers with Explanation

1. (c) $\frac{2851}{23} \times \frac{2862}{23} \times \frac{2862}{23} \times \frac{2873}{23} \times \frac{2873}{23} \times \frac{2873}{23}$
$=\frac{22 \times 10 \times 10 \times 21 \times 21 \times 21}{23}=\frac{462 \times 100 \times 441}{23}$
$=\frac{2 \times 8 \times 4}{23}=\frac{64}{23}$
फ्याप्षिएन
Remainder $\rightarrow 18$
2. (b) $\mathrm{HCF}=$ Common factors in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d $=2^{125} \times 3^{81} \times 5^{128}$
3. (c) Greatest number of 4-digits is 9999 .
L.C.M. of $15,25,40$ and 75 is 600 .

On dividing 9999 by 600 , the remainder is 399 .
\therefore Required number $=(9999-399)=9600$.
4. (b) Let the unit digit $=x$

Ten digit $=\mathrm{x}-2$
\therefore Number $=10(\mathrm{x}-2)+\mathrm{x}$
$=11 \mathrm{x}-20$
\rightarrow New number obtained after reversing the digits
$=10 \mathrm{x}+\mathrm{x}-2=11 \mathrm{x}-2$
ATQ,
$3(11 x-20)+\frac{6}{7}(11 x-2)=108$
$\Rightarrow 7(11 \mathrm{x}-20)+2(11 \mathrm{x}-2)=36 \times 7$
$\Rightarrow 77 \mathrm{x}-140+22 \mathrm{x}-4=252$
$\Rightarrow 99 x=252+144$
$\Rightarrow \mathrm{x}=\frac{396}{99}=4$
\therefore Number $=11 \mathrm{x}-20$
$=11 \times 4-20=24$
\therefore Sum of digit $=2+4=6$
5. (b) $2^{\frac{1}{2}} \times 2^{\frac{2}{4}} \times 2^{\frac{3}{8}} \times 2^{\frac{4}{16}} \times \ldots$..

$$
\begin{align*}
& =2^{\frac{1}{+}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\ldots}=2^{x} \\
& \Rightarrow x=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16} \tag{i}\\
& \Rightarrow \frac{x}{2}=\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32} \tag{ii}
\end{align*}
$$

(i) - (ii)
$\frac{x}{2}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\ldots$
खुाजिएय
$\frac{x}{2}=\frac{1 / 2}{1-1 / 2}=1 \Rightarrow x=2$

$$
\therefore 2^{x}=2^{2}=4
$$

खुापिিस
6. (d) $=\frac{1}{\mathrm{abc}} * \frac{(\mathrm{~s}-\mathrm{a})^{2}+(\mathrm{s}-\mathrm{b})^{2}+(\mathrm{s}-\mathrm{c})^{2}+\mathrm{s}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}$

$$
\begin{aligned}
& =\frac{1}{a b c} * \frac{s^{2}-2 s a+a^{2}+s^{2}+b^{2}-2 s b+s^{2}-2 s c+c^{2}+s^{2}}{a^{2}+b^{2}+c^{2}} \\
& =\frac{1}{a b c} * \frac{4 s^{2}+a^{2}+b^{2}+c^{2}-2 s(a+b+c)}{a^{2}+b^{2}+c^{2}} \\
& =\frac{1}{a b c} * \frac{4 s^{2}+a^{2}+b^{2}+c^{2}-4 s^{2}}{a^{2}+b^{2}+c^{2}}=\frac{1}{a b c}
\end{aligned}
$$

7. (b) $\mathrm{a}+\mathrm{b}=\frac{(\sqrt{5}+1)^{2}+(\sqrt{5}-1)^{2}}{5-1}=\frac{2\left[(\sqrt{5})^{2}+1\right]}{4}$

$$
a+b=3
$$

$a \cdot b=1$

$$
\begin{aligned}
& \left(\frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}\right) \times 3=\left(\frac{(a+b)^{2}-a b}{\left(a+b^{2}\right)-3 a b}\right) \times 3 \\
& =\left(\frac{3^{2}-1}{3^{2}-3}\right) \times 3=\frac{4}{3} \times 3=4
\end{aligned}
$$

8. (b) $\Rightarrow \frac{1}{4}+\frac{1}{3}+\frac{3}{8}+\frac{2}{5}+\ldots \frac{19}{20}$
$\Rightarrow \frac{1}{4}+\frac{2}{6}+\frac{3}{8}+\frac{4}{10}+\ldots \frac{19}{20}$
$=\frac{1}{2}\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\ldots \frac{19}{20}\right]$
$=\frac{1}{2}\left[-1+\frac{1}{2}-1+\frac{2}{3}-1+\frac{3}{4}-1+\frac{4}{5}-1+\ldots \frac{19}{20}-1+20\right]$
$=\frac{1}{2}\left[-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5} \ldots-\frac{1}{20}+20\right]$

$$
=\frac{1}{2}[20-\mathrm{K}]=10-\frac{\mathrm{K}}{2}
$$

9. (b) $\mathrm{a}^{2}+\frac{1}{4 \mathrm{a}^{2}}-1=9$

$$
\begin{align*}
& \mathrm{a}^{2}+\frac{1}{4 \mathrm{a}^{2}}=10 \tag{i}\\
& \left(\mathrm{a}+\frac{1}{2 \mathrm{a}}\right)^{2}=\mathrm{a}^{2}+\frac{1}{4 \mathrm{a}^{2}}+1=11
\end{align*}
$$

फ़ाप्डिर्स
$a+\frac{1}{2 a}=\sqrt{11}$
$\mathrm{a}^{2}-\frac{1}{4 \mathrm{a}^{2}}=3 \sqrt{11}$
$\left(\mathrm{a}^{2}+\frac{1}{4 \mathrm{a}^{2}}\right)\left(\mathrm{a}^{2}-\frac{1}{4 \mathrm{a}^{2}}\right)=30 \sqrt{11}$
ঋাড্ভির্জ
10. (b) $x+\sqrt{x^{2}+\sqrt{x^{4}+\sqrt{x^{8}+\sqrt{\mathrm{x}^{16}+\ldots}}}}$
$x+\sqrt{x^{2}+\sqrt{x^{4}+\sqrt{x^{8}+x^{8} \sqrt{1+\ldots}}}}$
$=x+\sqrt{x^{2}+\sqrt{x^{4}+\sqrt{x^{8}(1+\sqrt{1+\cdots})}}}$
$=x+\sqrt{x^{2}+\sqrt{x^{4}+x^{4} \sqrt{1+\sqrt{1+\cdots}}}}$
$=x+\sqrt{x^{2}+\sqrt{x^{4}(1+\sqrt{1+\ldots})}}$
$=x+\sqrt{x^{2}+x^{2} \sqrt{1+\sqrt{1+\ldots}}}$
$=x+x \sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}$
$=x(1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}})$
Now
Let $1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}}=\mathrm{y}$
$\therefore 1+\sqrt{y}=y \Rightarrow \sqrt{y}=y-1$
Squaring both sides
$y=y^{2}+1-2 y$
$\Rightarrow y^{2}-3 y+1=0$
Then, $\mathrm{y}=\frac{3 \pm \sqrt{9-4}}{2}=\frac{3 \pm \sqrt{5}}{2}$
$\because 1+\sqrt{1+\sqrt{1+\ldots}}$ will be positive and equal to
$\frac{3+\sqrt{5}}{2}$
$\therefore \mathrm{x}(1+\sqrt{1+\sqrt{1+\ldots}})=\mathrm{x}\left(\frac{3+\sqrt{5}}{2}\right)$
11. (c) Let the average of 13 innings be x.
$13 x+108$
$\Rightarrow 13 \mathrm{x}+108=14 \mathrm{x}+84$
फ़ाণ্ভির্ম
$\Rightarrow \mathrm{x}=24$
\Rightarrow His average after 14 innings
$=24+6=30$
12. (c) Total run of Team $\mathrm{A}=50 \times 6.1=305$

Team B needs in last ten over $=10 \times 6.5$
$=65$ runs
So, Team B's score now $=(305-65)=240$
13. (b) Consider Average of
$1,2,3 \rightarrow 2$
Average of
क्याष्डिर्य
$1,2,3,4,5 \rightarrow 3$
Consider average of
2, 3, $4 \rightarrow 3$
Average of
$2,3,4,5,6, \rightarrow 4$
So, the average increases by 1
New average becomes $=\mathrm{k}+1$
14. (a) Let Ronit's present age be x years.

Then, father's present age $=(x+3 x)$ years
$=4 x$ years.
$\therefore(4 \mathrm{x}+8)=\frac{5}{2}(\mathrm{x}+8)$
$\Rightarrow 8 x+16=5 x+40$
$\Rightarrow 3 x=24$
$\Rightarrow x=8$.
खणঙ্ভির্स
Hence, required ratio
$=\frac{(4 x+16)}{(x+16)}=\frac{48}{24}=2$
15. (a)

1 ratio $=3+7=10$ years
Priya's present age $=6 \times 10+3=63$ years.
Paypal's Present age $=5 \times 10+3=53$ years.
Ratio of their ages 17 years from now
$=63+17: 53+17$
$=80: 70$
$=8: 7$
16. (d) From questions-
$5 x+3 x+5 y+7 y=1200$
$2 \mathrm{x}+3 \mathrm{y}=300$
and $\frac{5 x+5 y}{3 x+7 y}=\frac{7}{5}$
$x=6 y$
फुपा্ডिएन

From eqn. (i) and (ii)
$\mathrm{x}=120$
\therefore Number of students before new admission
$=8 \mathrm{x}=960$
17. (b) $\frac{\text { Last year's salary of Mahesh }}{\text { Last year's salary of Suresh }}=\frac{3}{5}$

आ m্ভিষu
$\frac{\text { Present salary of Mahesh }}{\text { Present salary of Suresh }}=\frac{\left[3 \times \frac{3}{2}\right]}{\left[5 \times \frac{5}{4}\right]}=\frac{18}{25}$
ATQ, 18 units +25 units $=43$ units $=$ Rs. 43000
1 unit = Rs. 1000
So, Mahesh's present salary $=18$ units $=$ Rs. 18000
18. (c) $\frac{2}{5} \mathrm{~A}+40=\frac{2}{7} \mathrm{~B}+20=\frac{9}{17} \mathrm{C}+10=\mathrm{x}$
$\because \frac{5}{2}(\mathrm{x}-40)+\frac{7}{2}(\mathrm{x}-20)+\frac{17}{9}(\mathrm{x}-10)=600$
$\mathrm{x}=100$
So, A's share $=\frac{5}{2}(100-40)=$ Rs. 150
19. (b) Ratio of capitals, $\mathrm{S}: \mathrm{T}=\frac{1}{3}: \frac{2}{3}=1: 2$

Ratio of profits, $\mathrm{S}: \mathrm{T}=\frac{3}{5}: \frac{2}{5}=3: 2$
Let T's money was used for x moths.
$\therefore(1 \times 9):(2 \times x)=3: 2$
$\Rightarrow \mathrm{x}=3$ months
खुািিির্জ
20. (c) Investment of $B \rightarrow x$

Investment of $\mathrm{A} \rightarrow 3 \mathrm{x}$
Time of $\mathrm{B} \rightarrow \mathrm{y}$
Time of $\mathrm{A} \rightarrow 2 \mathrm{y}$
Profits Ratio $=3 \mathrm{x} \times 2 \mathrm{y}: \mathrm{x} \times \mathrm{y}$
$=6 x y: x y$
$=6: 1$
1r \rightarrow Rs. 4000
7r \rightarrow Rs. 28000
Total Profit $=$ Rs. 28000
21. (a) Let the initial investment of A and B is 18 x \&
$7 x$ respectively.
According to the question.
$\Rightarrow(18 \mathrm{x} \times 12)+16000) /(7 \mathrm{x} \times 12)+56000)=2 / 1$
$\mathrm{x}=2000$
आাভ্ভির্ন
Total initial investment of A and B

$$
=(18+7) \times 2000=\text { Rs. } 50000
$$

22. (d) $\mathrm{W} \quad \mathrm{x} \quad \mathrm{y}$

132100 A
ATQ, $\frac{100+\mathrm{A}}{\mathrm{A}}=\frac{100}{67}$
$A=\frac{6700}{33}=203.03 \simeq 203$
Required $\%=\frac{203-132}{132} \times 100$
$=\frac{71 \times 25}{33}=53.8 \%$ (Approx)
23. (b) Women $=\frac{43}{83} \times 311250=161250$

Men $=311250-161250=150000$
Total number of literate person
$=\frac{161250 \times 8}{100}+150000 \times \frac{24}{100}=48,900$
24. (c)

$\%$ change in savings $=\frac{16}{40} \times 100=40 \%$
25. (c) Let $\mathrm{B}=100$ then $\mathrm{A}=170, \mathrm{C}=170 \times \frac{29}{8.5}=580$ and $\mathrm{D}=580 \times \frac{130}{100}=754$
After increment $\mathrm{B}=129$ and $\mathrm{D}=754 \times \frac{129}{100}$
Required percentage $=\frac{754 \times \frac{129}{100}}{129} \times 100=754 \%$
26. (b)
27. (a) Let the CP of first, second and third houses be Rs. 100, Rs. 200 and Rs. 400 respectively. Gain $=20+40-40=$ Rs. 20
\therefore Gain $\%=\frac{20}{700} \times 100=\frac{20}{7}=2 \frac{6}{7}$
28. (b) $12 \frac{1}{2} \%=\frac{1}{8}, 14 \frac{2}{7} \%=\frac{1}{7}$

Her overall gain percentage

$$
=\frac{250 \times \frac{1}{8}+350 \times \frac{1}{7}}{250+350} \times 100
$$

आাড্仑ির্শ
$=\frac{31.25+50}{600} \times 100=\frac{8125}{600} \cong 13.5 \%$
29. (b) Let the cost price of each horse $=100$

So, overall profit
$=(35 \times 27+40 \times 17+10 \times 13)=1755$
If total profit is 1755 then cost price of each horse $=100$
If total profit is 12285 then cost price of each horse $=\frac{100}{1755} \times 12285=$ Rs. 700
30. (b) A.T.Q.
$x \times \frac{6}{5} \times \frac{6}{5} \times \frac{5}{6}=600$
कुण्डिर्स
$\mathrm{x}=500$
31. (b) $\mathrm{P}=\mathrm{M}-\mathrm{D}-\frac{\mathrm{MD}}{100}$
$25=\mathrm{M}-20-\frac{20 \mathrm{M}}{100}$
$45=\frac{4 \mathrm{M}}{5}$
$\mathrm{M}=\frac{225}{4} \%$
$25 \% \rightarrow 6000$
$100 \% \rightarrow$ Rs. 24000
Advertised Price
$=24000+24000 \times \frac{225}{400}$
$=24000+13500$
= Rs. 37500
32. (c) SI for 10 years $=3130 \&$ given that principal becomes 5 times after 5 years
$\mathrm{P} \times \mathrm{r} \times \mathrm{t} / 100=3130$
$\mathrm{Pr} / 100=313$
ATQ,
Total SI $=\mathrm{P} \times \mathrm{r} \times 5 / 100+5 \mathrm{P} \times \mathrm{r} \times 5 / 100$
$=\frac{\operatorname{Pr}}{100}(5+25)=313 \times 30=9390$
33. (d) Let the principal $=$ Rs. P

Time $=2$ years
Amount = Rs. 2.25 P ,
Let Rate $=$ R $\%$
By using formula,

$$
\begin{aligned}
& 2.25 \mathrm{P}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{2} \\
& \frac{225}{100}=\left(1+\frac{\mathrm{R}}{100}\right)^{2} \\
& \left(\frac{15}{10}\right)^{2}=\left(1+\frac{\mathrm{R}}{100}\right)^{2}
\end{aligned}
$$

$\frac{\mathrm{R}}{100}=\frac{15}{10}-1$
फ্যাণ্ভির্স
$\Rightarrow \frac{\mathrm{R}}{100}=\frac{5}{10}$
$R=50 \%$
34. (d) Let the principal be Rs. P and rate of interest be $\mathrm{R} \%$ per annum.
Difference of C.I. and S.I. for 2 years
$=\left[\mathrm{P} \times\left(1+\frac{\mathrm{R}}{100}\right)^{2}-\mathrm{P}\right]-\left(\frac{\mathrm{P} \times \mathrm{R} \times 2}{100}\right)=\frac{\mathrm{PR}^{2}}{10^{4}}$
Difference of C.I. and S.I. for 3 years
$=\left[\mathrm{P} \times\left(1+\frac{\mathrm{R}}{100}\right)^{3}-\mathrm{P}\right]-\left(\frac{\mathrm{P} \times \mathrm{R} \times 3}{100}\right)=\frac{\mathrm{PR}^{2}}{10^{4}}\left(\frac{300+\mathrm{R}}{100}\right)$
$\therefore \frac{\frac{\mathrm{PR}^{2}}{10^{4}}\left(\frac{300+\mathrm{R}}{100}\right)}{\frac{\mathrm{PR}^{2}}{10^{4}}}=\frac{25}{8} \Rightarrow\left(\frac{300+\mathrm{R}}{100}\right)$
$\Rightarrow \mathrm{R}=\frac{100}{8}=12 \frac{1}{2} \%$
खुप্ভির্স
35. (a)

Borrow Money	Interest 20%	Amount	Money after Payback Rs. 1800
4000	800	4800	$(4800-1800)$ $=3000$
3000	600	3600	$(3600-1800)$ $=1800$
1800	360	2160	2160

At the end of third year or starting of 4th year he should pay Rs. 2160 to clear all his dues.
36. (b)

A	10		6
B	15	60	4
C	20		3

Let the work completed in x days.
$6(x-1)+4 \times 3+3 \times x=60$
$6 \mathrm{x}-6+12+3 \mathrm{x}=60$
$9 x=54$
$x=6$
Ratio of share,
A : B : C
काप्ভিर्स
$=6 \times 5: 4 \times 3: 3 \times 6$
$=30: 12: 18=5: 2: 3$
Share of $\mathrm{C}=\frac{3}{10} \times 3000=$ Rs. 900
37. (b) Dev, Manish and Ankit together can complete the work in 4 days.

Dev and Manish together can do it in $\frac{24}{5}$ days
Manish and Ankit together can do it in 8 days. Therefore, Lev alone can complete the work in
$=\left(\frac{8 \times 4}{8-4}\right)$ days
ख्याव्डिए
$=8$ days.
Manish alone can complete the work in
$=\left(\frac{\frac{24}{5} \times 8}{8-\frac{24}{5}}\right)$ days
$=12$ days.
38. (d) Time taken by $\mathrm{A}=(\mathrm{x}+8)$ hours

Time taken by $B=\left(x+\frac{9}{2}\right)$ hours
Work done together in one hour
$=\frac{1}{x+8}+\frac{1}{x+\frac{9}{2}}$
Required no. of hours
$x=\frac{\left[(x+8)\left(x+\frac{9}{2}\right)\right]}{\left[2 x+\frac{25}{2}\right]}=6$ hours

39. (d) 100 workers can complete one third work in 10 days
Therefore total work $=100 \times 10 \times 3$
100 workers work for 10 days. Then 160 workers work for 8 days.
Let x workers will be discharged after 18th day. So $(160-x)$ workers do the remaining work in 5 days.
$100 \times 10+160 \times 8+(160-x) \times 5=100 \times 10 \times$ 3
$\mathrm{x}=16$
40. (b) Till 3 pm , part of tank filled
$=\frac{2}{8}+\frac{1}{12}=\frac{1}{4}+\frac{1}{12}=\frac{4}{12}=\frac{1}{3}$ part
खाज्डिर्स
\therefore Remaining part $=1-\frac{1}{3}=\frac{2}{3}$
Now, let x hr. be the time taken by all three pipes to fill the remaining part of tank $\left(\frac{1}{8}+\frac{1}{12}-\frac{1}{6}\right) x=\frac{2}{3}$
$\Rightarrow \frac{\mathrm{x}}{24}=\frac{2}{3}$
$\Rightarrow \mathrm{x}=16 \mathrm{hr}$
Duration of time $=16 \mathrm{hr}$.
So tank will be filled at $=3 \mathrm{pm}+16 \mathrm{hr}$.
$=7 \mathrm{am}$ next day
41. (b) Let B be turned off after x minutes.

The, part filled by $(A+B)$ in x min.

+ Part filled by A in $(30-\mathrm{x}) \mathrm{min} .=1$.
$\therefore \mathrm{x}\left(\frac{2}{75}+\frac{1}{45}\right)+(30-\mathrm{x}) \cdot \frac{2}{75}=1$
$\Rightarrow \frac{11 \mathrm{x}}{225}+\frac{(60-2 \mathrm{x})}{75}=1$
$\Rightarrow 11 \mathrm{x}+180-6 \mathrm{x}=225$.
Wुपिিर्स
$\Rightarrow x=9$.

42. (a) $A+B$ together takes 36 ming to fill the tank.
$\frac{1}{60}+\frac{1}{90}=\frac{180}{5}=36 \mathrm{~min}$.
To fill the tank upto $3 / 4$ height, pipes will take
$=\frac{3}{4} \times 36=27 \mathrm{~min}$.
So they will take 9 min to fill the left $1 / 4$ of the tank.

For remaining $9 \min =\frac{1}{9}-\frac{1}{36}=12 \mathrm{~min}$.
Total $=27+12=39 \mathrm{~min}$.
43. (d) Time taken by one tap to fill half of the tank $=3 \mathrm{hrs}$.

Part filled by 4 taps in 1 hour $=4 \times 1 / 6=2 / 3$
Remaining part $=1-1 / 2=1 / 2$
$2 / 3: 1 / 2:: 1: p$
$\mathrm{p}=1 / 2 \times 1 \times 3 / 2=3 / 4$ hrs. i.e., 45 min
So, total time taken $=3 \mathrm{hrs} 45 \mathrm{~min}$.
44. (a) We know that
$\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\sqrt{\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}} \Rightarrow \frac{30}{\mathrm{~S}_{2}}=\sqrt{\frac{225}{196}}$
फाणिएन
$\mathrm{S}_{2}=14 \times 2=28 \mathrm{~km} / \mathrm{h}$
45. (d) Speed of train 20% faster than the car

So, $6\left(t-\frac{12.5}{60}\right)=5 t$
$\mathrm{t}=1 \frac{1}{4} \mathrm{hr}$.
Speed of car $=\frac{75}{\mathrm{t}}=\frac{75}{5}=60 \mathrm{~km} / \mathrm{hr}$
46. (b) Speed of horse $\rightarrow x$

Speed of train $=3 \mathrm{x}$
Speed of train $=1.5 \times$ speed of steamer
$3 x=1.5 \times$ speed of steamer
$2 x=$ speed of steamer

ATQ,
आাভ্ভির্ज
$\frac{120}{2 x}+\frac{450}{3 x}+\frac{60}{x}=13 \frac{30}{60}$
$\frac{60}{x}+\frac{150}{x}+\frac{60}{x}=\frac{27}{2}$
$\frac{270}{\mathrm{x}}=\frac{27}{2} \quad \therefore \mathrm{x}=20$
Speed of train $=3 \times 20=60 \mathrm{~km} / \mathrm{hr}$
47. (a) Water that leaks in $5.5 \mathrm{~min}=2.25$ tones
\therefore Water that leaks in $60 \mathrm{~min}=\frac{2.25}{5.5} \times 60$
$=\frac{1350}{55}$ tones
After pumping water that is left in boat in 60 min.
$=\frac{1350}{35}-12=\frac{690}{55}$
$\therefore 92$ tones water that remains in boat in
$\frac{55}{690} \times 92=\frac{22}{3} \mathrm{hr}$
फ़ाণ্ভির্স
\therefore Required speed $=\frac{77}{\frac{22}{3}}=10.5 \mathrm{~km} / \mathrm{h}$
48. (c) Case I: When accident occurs at 30 kms .

Usual time taken by train to cover remaining distance $=45 \times 4=180 \mathrm{~min}$

Case II : When accident occurs at 48 kms .
Usual time taken by train to cover remaining distance $=36 \times 4=144 \mathrm{~min}$
In $(180-144)=36 \mathrm{~min}$., train covers 18 kms.
Hence speed of train $=18 / 36 \times 60=30 \mathrm{~km} / \mathrm{hr}$
49. (c) Ratio of Crude oil to Petrol in the jar $=40: 60$ $=2: 3$

Ratio of Crude oil to Petrol in the new mixture $=$ $26: 74=13: 37$
Now, applying the given allegation method, we have

फाणिির্জ

खাণ্ভির্স
\therefore Quantity of Petrol replaced $=\frac{2}{1+2}=\frac{2}{3}$
50. (d) Pulp in grapes $=3.4 \times \frac{20}{100}$

So, required answer $=\frac{3.4}{5} \times \frac{100}{85}=0.8 \mathrm{~kg}$
51. (b) Let the ratio be $\mathrm{x}: \mathrm{y}$

Let amount mixed be xk and yk
ATQ
$2 x k+5 y k=(x k+y k) 4$
$\Rightarrow \mathrm{y}=2 \mathrm{x}$
$\Rightarrow \mathrm{x} / \mathrm{y}=1 / 2$
52. (d) Amount of milk left after 3 operations

$$
\begin{aligned}
& =\left[40\left(1-\frac{4}{40}\right)^{3}\right] \text { litres } \\
& =\left(40 \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10}\right)=29.16 \text { litres. }
\end{aligned}
$$

ख্যাভ্ভির্ম
53. (b) Let speed of boat $=S_{B}$

Speed of steam $=S_{S}$

Let $\mathrm{AB}=\mathrm{D} \mathrm{km}$ then
$\mathrm{BC}=\mathrm{D} \mathrm{km}$
$\mathrm{AC}=2 \mathrm{Dkm}$
$\frac{D}{S_{B}-S_{S}}+\frac{D}{S_{B}+S_{S}}=\frac{13}{2}$
$\frac{2 D}{S_{B}-S_{S}}=9$
So $\frac{\mathrm{D}}{\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{\mathrm{S}}}=\frac{9}{2}$

From (i) and (iii) we get
$\frac{9}{2}+\frac{\mathrm{D}}{\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{S}}}=\frac{13}{2}$
$\frac{D}{S_{B}+S_{S}}=2$
खुप्িिर्य

To go from C to A it takes
$\frac{2 \mathrm{D}}{\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{S}}}=4$ hours
54. (d)

Let $y \Rightarrow$ Speed of current,
$x \Rightarrow$ Speed of swimmer in still water
$\mathrm{OA}=\frac{5}{60}(\mathrm{x}-\mathrm{y})$
$\mathrm{OB}=\frac{5}{60}(\mathrm{x}+\mathrm{y})$
$\mathrm{AB}=\mathrm{OB}-\mathrm{OA}$
$\frac{100}{1000}=\frac{5}{60}(x+y)-\frac{5}{60}(x-y)$
$6=5 x+5 y-5 x+5 y$
$10 y=6$
$y=0.6 \mathrm{~km} / \mathrm{hr}$
55. (c) Downstream speed $\Rightarrow x+y=d / 3$
$\mathrm{d}=3(\mathrm{x}+\mathrm{y})$
Upstream speed
$\Rightarrow \mathrm{x}-\mathrm{y}=\frac{\mathrm{d} \times 2}{7}$
$d=\frac{7}{2}(x-y)$
$\frac{7}{2}(x-y)=3(x+y)$
$7 x-7 y=6 x+6 y$
$x=13 y$
$\mathrm{y} \Rightarrow$ speed of water $=1.5 \mathrm{~km} / \mathrm{hr}$.
$\mathrm{x}=13 \times 1.5$
$=19.5 \mathrm{~km} / \mathrm{hr}$.
56. (a) Speed downstream $=(5+1) \mathrm{kmph}=6 \mathrm{kmph}$.

Speed upstream $=(5-1) \mathrm{kmph}=4 \mathrm{kmph}$.
Let the required distance be $x \mathrm{~km}$.
Then, $\frac{x}{6}+\frac{x}{4}=1$
खुाছिির্জ
$\Rightarrow 2 \mathrm{x}+3 \mathrm{x}=12$
$\Rightarrow 5 \mathrm{x}=12$
खुण्डिस
$\Rightarrow \mathrm{x}=2.4 \mathrm{~km}$.
57. (c) Minimum value of $a \sin ^{2} \theta+b \operatorname{cosec}^{2} \theta$ is
$2 \sqrt{\mathrm{ab}}($ if $\mathrm{a} \geq \mathrm{b})$ and $\mathrm{a}+\mathrm{b}($ if $\mathrm{a} \leq \mathrm{b})$
Now, here $\mathrm{a}<\mathrm{b}$,
So, minimum value $=7+14=21$
58. (a) As the given expression is of the form of
$a \sec \theta-b \tan \theta=\sqrt{a^{2}-b^{2}}$
Then $\sec \theta=\frac{a}{\sqrt{a^{2}-b^{2}}} \& \tan \theta=\frac{b}{\sqrt{a^{2}-b^{2}}}$
$\sec \theta=\frac{6}{\sqrt{32}}$
$\sec \theta=\frac{3}{2 \sqrt{2}}$
59. (b) $4 \mathrm{n} \alpha=\pi \Rightarrow 2 \mathrm{n} \alpha=\pi / 2$

Now,
$\cot \alpha \cdot \cot (2 n-1) \alpha=\cot \alpha \cdot \cot \left(\frac{\pi}{2}-\alpha\right)=\cot \alpha$.
= 1
Similarly,
$\cot 2 \alpha \cdot \cot (2 n-2) \alpha=1$
खुাঙ্ভির্জ
$\cot 3 \alpha \cdot \cot (2 n-3) \alpha=1$
$\cot \alpha . \cot 2 \alpha . \cot 3 \alpha$. $\operatorname{Cot}(2 n-1) \alpha$
$=[\cot \alpha \cdot \cot (2 n-1) \alpha][\cot 2 \alpha \cdot \cot (2 n-2)$
$\alpha] \ldots \ldots . .[\cot (n-1) \alpha \cdot \cot (n+1) \alpha]$
$=1.1 \ldots \ldots . . .1=1$
60. (c) $x \sin ^{2} 60^{\circ}-\frac{3}{2} \sec 60^{\circ} \tan ^{2} 30^{\circ}+\frac{4}{5} \sin ^{2} 45^{\circ} \tan ^{2}$ $60^{\circ}=0$
$\mathrm{x} \times\left(\frac{\sqrt{3}}{2}\right)^{2}-\frac{3}{2} \times 2 \times\left(\frac{1}{\sqrt{3}}\right)^{2}+\frac{4}{5} \times\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot(\sqrt{3})^{2}=0$
$\frac{3}{4} \mathrm{x}-3 \times \frac{1}{3}+\frac{4}{5} \times \frac{1}{2} \times 3=0$
$\frac{3}{4} x-1+\frac{6}{5}=0$
$\frac{15 \mathrm{x}-20+24}{20}=0$
खुাপ্ভির্জ
$15 x+4=0$,
$x=\frac{-4}{15}$
61. (b) $\sin ^{2} \Phi=\sin \theta \cos \Phi$
or $1-\cos 2 \theta=\sin 2 \Phi$
or $\cos 2 \theta=1-\sin 2 \Phi=1+\cos \left(\frac{\pi}{2}+2 \phi\right)$
or $\cos 2 \theta=2 \cos ^{2}\left(\frac{\pi}{4}+\phi\right)$
62. (b) $\left[\frac{\cos ^{2} \mathrm{~A}(\sin \mathrm{~A}+\cos \mathrm{A})}{\operatorname{cosec}^{2} \mathrm{~A}(\sin \mathrm{~A}-\cos \mathrm{A})}\right]+$

$$
\begin{aligned}
& {\left[\frac{\sin ^{2} A(\sin A-\cos A)}{\sec ^{2} A(\sin A+\cos A)}\right]\left(\sec ^{2} A-\operatorname{cosec}^{2} A\right)} \\
& =\frac{\cos ^{2} A \cdot \sin ^{2} A(\sin A+\cos A)}{(\sin A-\cos A)}+ \\
& {\left[\frac{\sin ^{2} A \cdot \cos ^{2} A(\sin A-\cos A)}{(\sin A+\cos A)}\right]\left[\frac{1}{\cos ^{2} A}-\frac{1}{\sin ^{2} A}\right]} \\
& =\left[\frac{(\sin A+\cos A)^{2}+(\sin A-\cos A)^{2}}{\sin ^{2} A-\cos ^{2} A}\right] \times
\end{aligned}
$$

$$
\left(\sin ^{2} A-\cos ^{2} A\right)
$$

$$
=2
$$

63. (a)

$$
\frac{(\sin \theta+\cos \theta)(1-\sin \theta) \frac{(1+\sin \theta)}{\cos \theta} \sec \theta}{\left[\sin \theta \frac{(\sin \theta+\cos \theta)}{\cos \theta}+\cos \theta \frac{(\sin \theta+\cos \theta)}{\sin \theta}\right] \sin \theta \cos \theta}
$$

$$
=\frac{\frac{1-\sin ^{2} \theta}{\cos ^{2} \theta}}{\left[\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right] \sin \theta \cos \theta}=1
$$

64. (b) Let $\mathrm{x}=30^{\circ}$

$$
\begin{aligned}
& \frac{\sqrt{3}}{1-\frac{1}{\sqrt{3}}}+\frac{\frac{1}{\sqrt{3}}}{1-\sqrt{3}} \\
& =\frac{3}{\sqrt{3}-1}-\frac{1}{\sqrt{3}(\sqrt{3}-1)} \\
& =\frac{3 \sqrt{3}-1}{3-\sqrt{3}} \\
& =\frac{(3 \sqrt{3}-1) \times(3+\sqrt{3})}{6}
\end{aligned}
$$

फ्राप्जियन
$=\frac{9 \sqrt{3}-3+9-\sqrt{3}}{6}$
$=\frac{8 \sqrt{3}+6}{6}=\frac{4 \sqrt{3}+3}{3}=\frac{4}{\sqrt{3}}+1$
ख্যাভ্ভির্ম
So, (b) option
$=\frac{4}{\sqrt{3}}+1$
65. (c) $\operatorname{Sin} x=\frac{4}{5}$

So, $\left(\frac{\frac{4}{3}-\frac{3}{4}}{\frac{5}{3}-\frac{4}{3}}\right)\left(\frac{\left(\frac{3}{5}\right)^{4}-\left(\frac{4}{5}\right)^{4}}{2 \times\left(\frac{3}{5}\right)^{2}-1}\right)=7 / 4$
66. (d) $a \operatorname{Sin} \theta+b \operatorname{Cos} \theta=m$

Let $\mathrm{a} \operatorname{Cos} \theta-\mathrm{b} \operatorname{Sin} \theta=6 \mathrm{x}$
Squaring and adding (i) and (ii)
$a^{2} \operatorname{Sin}^{2} \theta+b^{2} \operatorname{Cos}^{2} \theta+2 a b \operatorname{Sin} \theta \operatorname{Cos} \theta+a^{2} \operatorname{Cos}^{2} \theta+$
$\mathrm{b}^{2} \operatorname{Sin}^{2} \theta-2 \mathrm{ab} \operatorname{Sin} \theta \operatorname{Cos} \theta$
$=\mathrm{m}^{2}+36 \mathrm{x}^{2}$
$=\mathrm{a}^{2}\left(\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta\right)+\mathrm{b}^{2}\left(\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta\right)=\mathrm{m}^{2}+$
$36 x^{2}$
$=\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{m}^{2}+36 \mathrm{x}^{2}$
$=36 \mathrm{x}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{m}^{2}$
खुण্ভির্ম
$x= \pm \frac{1}{6} \sqrt{a^{2}+b^{2}+m^{2}}$
67. (a) Max. value of $\sin \theta=1$

So, $\operatorname{Sin}^{3} \theta+2 \sin ^{2} \theta+3 \sin \theta$
$=1+2+3=6$
At $\theta=0^{\circ}, \sin \theta=0$
$\operatorname{Sin}^{3} \theta+2 \sin ^{2} \theta+3 \sin \theta=0$
So, statement (1) is correct.
68. (c) Volume of metal $=\pi \times 28 \times\left(\mathrm{r}^{2}-8^{2}\right)$
$1496=\pi \times 28\left(\mathrm{r}^{2}-8^{2}\right)$
$\mathrm{r}=9 \mathrm{~cm}$
खुापिर्स
69. (d)

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{BD} \\
& \mathrm{AE}=\mathrm{BF}=\mathrm{x}(\text { let }) \\
& \mathrm{AB}=(\mathrm{a}-\mathrm{b})+2 \mathrm{x} \\
& \mathrm{a}+\mathrm{b}=\mathrm{a}-\mathrm{b}+2 \mathrm{x} \\
& \mathrm{x}=\mathrm{b}
\end{aligned}
$$

Now, In $\triangle \mathrm{ACE}$,
$\mathrm{x}^{2}+\mathrm{a}^{2}=\mathrm{AC}^{2}$
$\mathrm{AC}^{2}=\mathrm{b}^{2}+\mathrm{a}^{2}$
$\Rightarrow A C=\sqrt{b^{2}+\mathrm{a}^{2}}$
70. (a)

By Apollonius theorem -

$$
\begin{aligned}
& \mathrm{AD}=\sqrt{\frac{2 \mathrm{AB}^{2}+2 \mathrm{AC}^{2}-\mathrm{BC}^{2}}{4}} \\
& \sqrt{\frac{32+50-4}{4}} \\
& \mathrm{AD}=\sqrt{\frac{39}{2}}
\end{aligned}
$$

71. (c) Here given a diagram as shown in the question

$\angle \mathrm{RSP}=\angle \mathrm{SRQ}=60^{\circ}$ (Given)
$\angle \mathrm{PQR}=\angle \mathrm{QPS}=120^{\circ}$ (Given)
In a quadrilateral PMOK
$\angle \mathrm{MOK}=180^{\circ}-120^{\circ}=60^{\circ}$
फ़ाভिएय
$\angle \mathrm{POM}=\angle \mathrm{KOP}=30^{\circ}$
$\mathrm{OK}=\mathrm{OM}=9 \mathrm{~cm}$ (Given)

In $\Delta \mathrm{POM}$
$\tan 30=\mathrm{PM} / 9 \Rightarrow \mathrm{PM}=3 \sqrt{ } 3=\mathrm{PK}=\mathrm{MQ}=\mathrm{QL}$
Similarly In \triangle SON
$\tan 30=$ ON/SN
$\mathrm{SN}=9 \sqrt{ } 3=\mathrm{SK}=\mathrm{NR}=\mathrm{RL}$
So, perimeter PQRS
$=3 \sqrt{ } 3 \times 4+9 \sqrt{ } 3 \times 4$
$=4 \times 12 \sqrt{ } 3$
$=48 \sqrt{ } 3$
72. (a)

$\mathrm{OC}=\mathrm{OD}=\mathrm{OB}=\mathrm{OA}=$ radius $=\mathrm{r}$
$\Rightarrow \operatorname{In} \triangle \mathrm{COD}$
$\mathrm{b}^{2}=2 \mathrm{r}^{2}$
$\Rightarrow \mathrm{r}=\frac{\mathrm{b}}{\sqrt{2}}$
And $\triangle \mathrm{AOB}=$ equilateral triangle
Hence, $a=r$
$\mathrm{r}=\frac{\mathrm{b}}{\sqrt{2}}$, Hence $\mathrm{b}=\sqrt{2 \mathrm{a}}$
$\Rightarrow 2 \mathrm{a}^{2}-\mathrm{b}^{2}=0$
73. (a) $\because r_{a}>r_{b}>r_{c}$

$$
\begin{aligned}
& \Rightarrow \frac{\Delta}{\mathrm{s}-\mathrm{a}}>\frac{\Delta}{\mathrm{s}-\mathrm{b}}>\frac{\Delta}{\mathrm{s}-\mathrm{c}} \\
& \Rightarrow \mathrm{~s}-\mathrm{a}<\mathrm{s}-\mathrm{b}<\mathrm{s}-\mathrm{c} \\
& \Rightarrow-\mathrm{a}<-\mathrm{b}<-\mathrm{c} \\
& \Rightarrow \mathrm{a}>\mathrm{b}>\mathrm{c}
\end{aligned}
$$

74. (a) D

कुাब্ভির্জ

$$
\mathrm{ABCD} \rightarrow \text { rectangle }
$$

ACEF \rightarrow square
Let AB - $\mathrm{a} \mathrm{cm}, \mathrm{BC}-\mathrm{b} \mathrm{cm}$
ATQ,
$a+b=15 \mathrm{~cm}$
and,
Diagonal of rectangle
$=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=$ side of square
$\frac{\text { Area of square }}{\text { Area of rectangle }}=\frac{\left(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}\right)^{2}}{\mathrm{ab}}$
$\Rightarrow \frac{13}{6}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{ab}}$
$\Rightarrow \frac{13}{12}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2 \mathrm{ab}}$
\Rightarrow Applying componendo dividendo
$\Rightarrow \frac{13+12}{13-12}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}}{\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}}$
$\Rightarrow \frac{25}{1}=\frac{(\mathrm{a}+\mathrm{b})^{2}}{(\mathrm{a}-\mathrm{b})^{2}}$
$\Rightarrow(\mathrm{a}-\mathrm{b})^{2}=\frac{(15)^{2}}{25}$
$\Rightarrow(\mathrm{a}-\mathrm{b})^{2}=\frac{225}{25}=9$
$\Rightarrow(\mathrm{a}-\mathrm{b})=3$
\therefore Area of square $=\mathrm{a}^{2}+\mathrm{b}^{2}$
$=\frac{1}{2}\left[(a+b)^{2}+(a-b)^{2}\right]$
$=\frac{1}{2}\left[(15)^{2}+(3)^{2}\right]$
$=\frac{1}{2}[225+9]=\frac{234}{2}=117 \mathrm{~cm}^{2}$
75. (d) $\mathrm{B}=2, \mathrm{C}=\sqrt{3}, \angle \mathrm{~A}=30^{\circ}$
$\mathrm{A}=\sqrt{\mathrm{B}^{2}+\mathrm{C}^{2}-2 \mathrm{BC} \cos \mathrm{A}}$
$A=\sqrt{4+3-2 \cdot 2 \cdot \sqrt{3} \cdot \frac{\sqrt{3}}{2}}$
$=1$
$\therefore S=\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}}{2}=\frac{3+\sqrt{3}}{2}$
and $\Delta=\frac{1}{2} \mathrm{BC} \sin \mathrm{A}$
$=\frac{1}{2} \times 2 \times \sqrt{3} \times \frac{1}{2}$
$=\frac{\sqrt{3}}{2}$
$\mathrm{r}=\frac{\Delta}{\mathrm{S}}=\frac{\sqrt{3}}{3+\sqrt{3}}$
$=\frac{1}{\sqrt{3}+1}$
$=\frac{\sqrt{3}-1}{2}$
76. (b) Sum of interior angles of pentagon

$$
\begin{aligned}
& =(5-2) \times 180^{\circ}=540^{\circ} \\
& x+2 x+3 x+4 x+140=540 \\
& x=40
\end{aligned}
$$

So, difference between second largest and second smallest angle is $=140-80=60^{\circ}$
77. (b) Each interior angle of polygon $=\frac{(n-2) 180^{\circ}}{n}$
$=60^{\circ}$, when $\mathrm{n}=3$,
$=90^{\circ}$, when $\mathrm{n}=4$,
$=108^{\circ}$, when $\mathrm{n}=5$,
$=120^{\circ}$, when $\mathrm{n}=6$,
ख্যাভ্ভির্ম
$=135^{\circ}$, when $\mathrm{n}=8$,
$=140^{\circ}$, when $\mathrm{n}=9$,
$=144^{\circ}$, when $\mathrm{n}=10$,
$=150^{\circ}$, when $\mathrm{n}=12$
78. (c) Since number of diagonals in n sided polygon $=n(n-3) / 2$
For, $\mathrm{n}=10$,
Number of diagonals
$=(10 \times 7) / 2=35$
79. (b) $\mathrm{OP}=\sqrt{(2-0)^{2}+(0-2)^{2}}=2$
$\mathrm{OQ}=\sqrt{(0-0)^{2}+(3 / 2-0)^{2}}=3 / 2$

$$
\begin{aligned}
& \mathrm{PQ}=\sqrt{\mathrm{OP}^{2}+\mathrm{OQ}^{2}} \\
& =\sqrt{4+\left(\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}=2.5 \mathrm{~cm}
\end{aligned}
$$

फ़ाष्डिर्स
80. (b) $L \Rightarrow 2 x-y=0$

For $(0,1) L^{\prime}=-1$
L' < 0
For $\left(\frac{4}{5}, \frac{3}{5}\right)$
$\mathrm{L}^{\prime \prime}=\frac{8}{5}-\frac{3}{5}=1$
$\mathrm{L}^{\prime \prime}>0$
Hence both points lie on opposite side of the line.
81. (c) If centroid is at origin then,

$$
\frac{a+b+c}{3}=0
$$

$(a+b+c)=0$
Hence, $a^{3}+b^{3}+c^{3}-3 a b c=0$
$a^{3}+b^{3}+c^{3}=3 a b c$
82. (a) As we know that
$\mathrm{x}=\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{(\mathrm{~m}+\mathrm{n})}$
$\mathrm{y}=\frac{\mathrm{my} \mathrm{y}_{2}+\mathrm{ny} \mathrm{y}_{1}}{(\mathrm{~m}+\mathrm{n})}$
For $\mathrm{y}=0$,
$0=\frac{\mathrm{m} \times(-3)+\mathrm{n} \times 6}{\mathrm{~m}+\mathrm{n}}$
कुापिएर्य
$\frac{\mathrm{m}}{\mathrm{n}}=\frac{6}{3}=\frac{2}{1}$
83. (b) The required coordinates of the point which divides the in the ratio 5:3 are
$\left(\frac{\mathrm{mx}_{2}-\mathrm{nx}_{1}}{\mathrm{~m}-\mathrm{n}}, \frac{\mathrm{my}_{2}-\mathrm{ny}_{1}}{\mathrm{~m}-\mathrm{n}}\right)$
Here, $\mathrm{m}: \mathrm{n}=5: 3,\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(2,4),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ $=(6,8)$
Hence the required co-ordinates $=(12,14)$
84. (d) Let $x_{1}=-5, x_{2}=4, x_{3}=4$
$y_{1}=7, y_{2}=-1, y_{3}=-1$
Area of triangle formed by given points
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[(-5)\{-1-(-1)\}+(4)(-1-7)+4\{7-$
(-1) \}]
$=0$
क्याप्षिर्य
Hence the example three points are not forming any triangle, rather they are collinear.
85. (c) Let the coordinate of the moving point P be (h, k).

Then, $[\mathrm{h}-(\mathrm{m}+\mathrm{n})]^{2}+[\mathrm{k}-(\mathrm{n}-\mathrm{m})]^{2}$
$=[\mathrm{h}-(\mathrm{m}-\mathrm{n})]^{2}+[\mathrm{k}-(\mathrm{n}+\mathrm{m})]^{2}$
$\Rightarrow \mathrm{h}^{2}+(\mathrm{m}+\mathrm{n})^{2}-2 \mathrm{~h}(\mathrm{~m}+\mathrm{n})+\mathrm{k}^{2}+(\mathrm{n}-\mathrm{m})^{2}-$
$2 \mathrm{k}(\mathrm{n}-\mathrm{m})$
$=\mathrm{h}^{2}+(\mathrm{m}-\mathrm{n})^{2}-2 \mathrm{~h}(\mathrm{~m}-\mathrm{n})+\mathrm{k}^{2}+(\mathrm{n}+\mathrm{m})^{2}-2 \mathrm{k}$
($\mathrm{m}+\mathrm{n}$)
$\Rightarrow-2[\mathrm{~h}(\mathrm{~m}+\mathrm{n})+\mathrm{k}(\mathrm{n}-\mathrm{m})]=-2[\mathrm{~h}(\mathrm{~m}-\mathrm{n})+$
$\mathrm{k}(\mathrm{m}+\mathrm{n})$]
$\Rightarrow \mathrm{mh}+\mathrm{nh}+\mathrm{nk}-\mathrm{mk}=\mathrm{mh}-\mathrm{nh}+\mathrm{mk}+\mathrm{nk}$
$\Rightarrow 2 \mathrm{nh}=2 \mathrm{mk} \Rightarrow \mathrm{nh}=\mathrm{mk}$
\therefore Required locus is $n x=m y$
फறাভ্ভির্ম
86. (b)

Mark's Gap	No. of Students
$0-10$	30
$10-20$	22
$20-30$	13
$30-40$	16
40 above	26

No. of Students b/w 20 to 40 marks $=29$
87. (a) Total audience of 2 nd show $=300+450+700$ $=1450$
Total audience of 3 rd show $=600+400+750$ $=1750$
Required increase $\%=\frac{1750-1450}{1450} \times 100=$ 20.69\%
88. (c) Percentage decrease $=\frac{32-27}{32} \times 100=15 \frac{5}{8} \%$
89. (c) Total income from income tax and customs is $=\frac{3850 \times 21}{100}$

आাঙ্ভির্ম
Total expenditure on defense and central sector
schemes $=\frac{2950 \times 21}{100}$
Required $\%=\frac{\frac{3850 \times 21}{100}-\frac{2950 \times 21}{100}}{\frac{2950 \times 21}{100}} \times 100$

$$
=\frac{900 \times 100}{2950}=30.51 \%
$$

90. (a) Required percent $=\frac{\frac{6+6+8}{3}}{\frac{20+9}{2}} \times 100$

क्याঙ्डिय

$$
=\frac{4000}{87}=46 \% \text { approx }
$$

91. (d) Required Ratio

$$
=\frac{3850(18+17+7)}{2950(13+18)}=\frac{3234}{1829}
$$

क्याष्डिए
92. (b) Average $=\frac{100}{8}=12 \frac{1}{2} \%$

Required sector $=4$
93. (a) Difference between runs scored by Jadeja and Rahane
Match $I=25-20=5$
Match II = 15-0 = 15
Match III $=70-30=40$
Match IV $=40-35=5$
Maximum difference $=40$ runs.
94. (b) Total runs scored by all the batsmen in all 4 matches.

1. Dhoni $=10+50+35+60=155$
2. Jadeja $=25+15+70+40=150$
3. Kohli $=40+35+55+50=180$
4. Rahane $=20+0+30+35=85$

Least runs are scored by Rahane.
95. (b) $x^{2}-x-6$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}+2)$
\therefore The expression $\left(\mathrm{px}^{3}-\mathrm{qx}^{2}-7 \mathrm{x}-6\right)$ will result 0 at $x=3$ and $x=-2$ as it is divisible by $(x-3)$ and $(x+2)$
At $\mathrm{x}=3 \Rightarrow(3)^{3} \mathrm{p}-(3)^{2} \mathrm{q}-7 \times(3)-6=0$
$27 \mathrm{p}-9 \mathrm{q}=27$
At $\mathrm{x}=-2 \Rightarrow(-2)^{3} \mathrm{p}-(-2)^{2} \mathrm{q}-7 \times(-2)-6=0$
$-8 p-4 q=-8$
On solving (i) and (ii) we get, $\mathrm{p}=1$ and $\mathrm{q}=0$
96. (a) $-1+2+5 \mathrm{a}-7=\mathrm{R}_{1} \Rightarrow 5 \mathrm{a}-6=\mathrm{R}_{1}$ and $8+4 \mathrm{a}$
$-24+6=R_{2} \Rightarrow 4 a-10=R_{2}$
$\therefore 10 a-12+4 a-10=6$
$\Rightarrow 14 \mathrm{a}=28$
$\Rightarrow \mathrm{a}=2$
97. (a) Clearly ± 1 are the zeros of given equation,

For $\mathrm{x}=1$;
$a+b+c+d+e=0$
\& for $\mathrm{x}=-1$;
खुप्षिए
$\mathrm{a}-\mathrm{b}+\mathrm{c}-\mathrm{d}+\mathrm{e}=0$
or $\mathrm{a}+\mathrm{c}+\mathrm{e}=\mathrm{b}+\mathrm{d}$
98. (a) Let zeroes be, a \& $\frac{1}{\mathrm{a}}$
$\therefore \mathrm{a}+\frac{1}{\mathrm{a}}=\frac{17}{\mathrm{k}^{2}}$
\& $1=\frac{\mathrm{k}+2}{\mathrm{k}^{2}}$
फुাপ্ভিন
$\Rightarrow \mathrm{k}^{2}-\mathrm{k}-2=0$
$\Rightarrow \mathrm{k}^{2}-2 \mathrm{k}+\mathrm{k}-2=0$
$\Rightarrow(\mathrm{k}-2)(\mathrm{k}+1)=0$
$\Rightarrow \mathrm{k}=2 \quad(\because \mathrm{k}>0)$
99. (d) $x^{3}-a x^{2}+b x-a=0$
$\Rightarrow \mathrm{x}\left(\mathrm{x}^{2}+\mathrm{b}\right)-\mathrm{a}\left(\mathrm{x}^{2}+1\right)=0$
If $\mathrm{b}=1$, then
$(x-a)\left(x^{2}+1\right)=0$
Then $x^{2}=-1 \Rightarrow$ imaginary roots of the given equation
$\therefore \mathrm{b} \neq 1$
100.(c)

ख্যাভ্ভির্ম

In $\Delta \mathrm{CBD}$,
$\tan \beta=\frac{\mathrm{h}}{\mathrm{BD}}$
$\mathrm{BD}=\frac{\mathrm{h}}{\tan \beta}=\mathrm{h} \cot \beta$
In CBA,
$\tan \alpha=\frac{\mathrm{CB}}{\mathrm{BA}}=\frac{\mathrm{CB}}{\mathrm{BD}+\mathrm{DA}}$
$\tan \alpha=\frac{\mathrm{h}}{\mathrm{h} \cot \beta+\frac{\mathrm{h}}{2}}$
$\cot \beta+\frac{1}{2}=\frac{1}{\tan \alpha}$
$\cot \beta+\frac{1}{2}=\cot \alpha$
$\cot \alpha-\cot \beta=\frac{1}{2}$

खाড্ভির্ন

